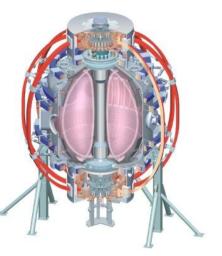


Supported by



Scaling of Turbulence Properties with ρ^*

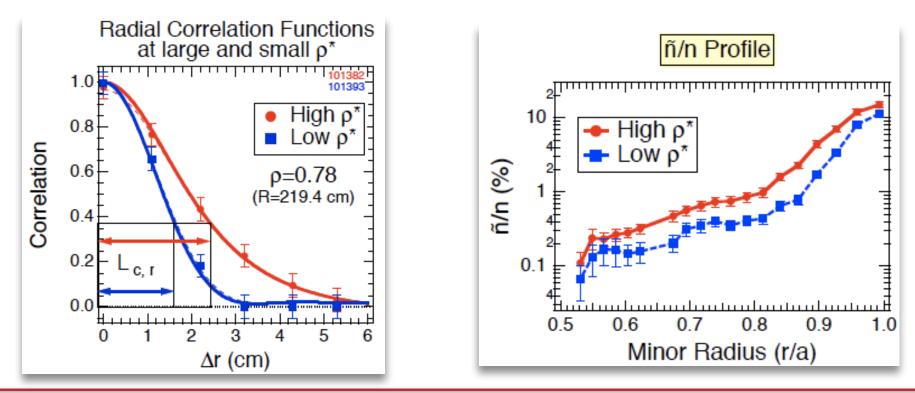
College W&M **Colorado Sch Mines** Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois U Maryland **U Rochester** U Washington U Wisconsin

G. McKee, R. Fonck, D. Smith UW-Madison

2011 NSTX Research Forum March 15-18, 2011

Culham Sci Ctr U St. Andrews York L Chubu U Fukui U Hiroshima L Hyogo L Kyoto L Kyushu L Kyushu Tokai L NIFS Niigata L **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINIT **KBS** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Scaling of Turbulence Properties with ρ^*


- Goal: Determine how turbulence properties (L_{cr}, ñ/n, decorrelation time, S(k) spectra) scale with ρ* in the ST; compare simulations as well as standard tokamak scaling
- Gyrokinetics predicts that as ρ^* is varied:

- $\tilde{n}/n \sim \rho^*$, L_{c,r} & L_{c, $\theta \sim \rho_{I}$, $\tau_{c} \sim a/c_{s}$}

- Establish two matching plasmas with varying ρ^* while other dimensionless parameters held fixed (q₉₅, β , ν , T_e/T_{i...})
 - Measure turbulence across profile with BES and other fluct. diags.
- R(11-1), FY12 JRT

Low-k Turbulence in Tokamak found to scale with Gyrokinetic Predictions

- NSTX not in a small ρ * regime, unique condition
 - Initial BES measurements suggest large correlation lengths (~10 cm) (D. Smith)
- Turbulence scaling with ρ * (BES on DIII-D):

